- Rechtseigenvektor
- (m)правый собственный вектор
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Rechtseigenvektor — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sc … Deutsch Wikipedia
Algebraische Vielfachheit — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch … Deutsch Wikipedia
Eigenfunktion — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch … Deutsch Wikipedia
Eigenfunktionen — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch … Deutsch Wikipedia
Eigenvektor — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch … Deutsch Wikipedia
Eigenvektoren — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch … Deutsch Wikipedia
Eigenwert — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch … Deutsch Wikipedia
Eigenwerte — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch … Deutsch Wikipedia
Eigenwertgleichung — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch … Deutsch Wikipedia
Eigenwertproblem — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) seine Richtung (entlang der vertikalen Achse) nicht geändert hat, der blaue Pfeil jedoch schon. Der rote Vektor ist ein Eigenvektor der Scherabbildung,… … Deutsch Wikipedia
Eigenwertzerlegung — In dieser Scherung der Mona Lisa wurde das Bild so verformt, dass der rote Pfeil (Vektor) entlang der vertikalen Achse seine Richtung nicht geändert hat, während der blaue Pfeil dies tut. Der rote Vektor ist ein Eigenvektor der Sch … Deutsch Wikipedia